Articles Fritz has written:

Creating a “Pokédex” Chatbot with React Native and Dialogflow


As a developer who grew up playing Pokémon, the projects I do for fun usually have to do with Pokémon. The dataset is just too fun to work with, and you feel like you’re a child again while you’re building the thing (whatever it might be).

In this tutorial, we’ll create a chatbot version of the Pokédex. We’ll use React Native to build the app and Dialogflow to build the brains of the chatbot.

Continue reading “Creating a “Pokédex” Chatbot with React Native and Dialogflow”

Analyzing Machine Learning Models with Yellowbrick


Anscombe’s quartet demonstrates a very significant idea: we need to visualize data before analyzing it. The quartet consists of four hypothetical datasets each containing eleven data points.

Whereas all these datasets have essentially the same descriptive statistics including the mean, variance, correlation, and regression line, they have very different distributions when graphed.

Continue reading “Analyzing Machine Learning Models with Yellowbrick”

Simultaneously detecting face, hand motion, and pose in real-time on mobile devices


In terms of usefulness and popularity, object detection is arguably at the forefront of the computer vision domain. A diverse application of CV with many facets, object detection helps solve some of the most explored problems—face detection, and more recently, pose estimation, hand/gesture tracking, AR filters, and so on.

Continue reading “Simultaneously detecting face, hand motion, and pose in real-time on mobile devices”

Research Guide: Data Augmentation for Deep Learning


Data augmentation involves the process of creating new data points by manipulating the original data. For example, for images, this can be done by rotating, resizing, cropping, and more.

This process increases the diversity of the data available for training models in deep learning without having to actually collect new data. This then, generally speaking, improves the performance of deep learning models.

Continue reading “Research Guide: Data Augmentation for Deep Learning”

Swift loves TensorFlow and Core ML

Federated learning, transfer learning, and model personalization

For a healthcare research project I’m working on, I’m investigating for a federated learning platform that supports mobile and wearable platforms—in particular on the Apple ecosystem.

Federated learning represents a tremendous opportunity for the adoption of machine learning in many use cases, and especially where efficiency and privacy concerns require us to distribute the training process, instead of centrally collecting data on the cloud and applying traditional ML pipelines.

Continue reading “Swift loves TensorFlow and Core ML”

Pruning Machine Learning Models in TensorFlow


In a previous article, we reviewed some of the pre-eminent literature on pruning neural networks. We learned that pruning is a model optimization technique that involves eliminating unnecessary values in the weight tensor. This results in smaller models with accuracy very close to the baseline model.

In this article, we’ll work through an example as we apply pruning and view the effect on the final model size and prediction errors.

Continue reading “Pruning Machine Learning Models in TensorFlow”

Microsoft Azure’s QnA Maker: Making FAQs a bit more chatty


Chatbots are a thing. Yes, they may seem gimmicky on the surface. But a lot has changed since the days of SmarterChild. Dig a little deeper and you’ll find there’s more to them than meets the eye.

First, chatbots are, essentially, gateways to voice apps. Whether you use Alexa, Siri, Google Assistant, or Cortana, building apps with a conversational interface is a new norm. Second, chatbots can provide a first line of support that users can feel comfortable interacting with.

Continue reading “Microsoft Azure’s QnA Maker: Making FAQs a bit more chatty”

Swifty ML: An Intro to Swift for TensorFlow


When it comes to machine learning, Python has been dominant. However, we can already foresee how Python has a limit in terms of how far it can scale with modern ML demands.

Google seems to have considered this as it’s considered the future of ML (especially through the lens of TensorFlow). They realize that, in lieu of overhauling Python, a more modern and adaptable language could change the game.

Continue reading “Swifty ML: An Intro to Swift for TensorFlow”

Simple Semantic Image Segmentation in an iOS Application — DeepLabV3 Implementation


I was working on a personal project on tumor detection and recognition and decided to us some image segmentation tools and techniques to refine my recognition model.

As I was working on this project, I found myself wondering—is it possible to do this on mobile? The answer is YES, and so I decided to give it a shot.

Continue reading “Simple Semantic Image Segmentation in an iOS Application — DeepLabV3 Implementation”